Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Cell Biochem Funct ; 42(3): e4016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613224

RESUMO

EH domain-containing protein 2 (EHD2) is a member of the EHD protein family and is mainly located in the plasma membrane, but can also be found in the cytoplasm and endosomes. EHD2 is also a nuclear-cytoplasmic shuttle protein. After entering the cell nuclear, EHD2 acts as a corepressor of transcription to inhibit gene transcription. EHD2 regulates a series of biological processes. As a key regulator of endocytic transport, EHD2 is involved in the formation and maintenance of endosomal tubules and vesicles, which are critical for the intracellular transport of proteins and other substances. The N-terminal of EHD2 is attached to the cell membrane, while its C-terminal binds to the actin-binding protein. After binding, EHD2 connects with the actin cytoskeleton, forming the curvature of the membrane and promoting cell endocytosis. EHD2 is also associated with membrane protein trafficking and receptor signaling, as well as in glucose metabolism and lipid metabolism. In this review, we highlight the recent advances in the function of EHD2 in various cellular processes and its potential implications in human diseases such as cancer and metabolic disease. We also discussed the prospects for the future of EHD2. EHD2 has a broad prospect as a therapeutic target for a variety of diseases. Further research is needed to explore its mechanism, which could pave the way for the development of targeted treatments.


Assuntos
Fenômenos Biológicos , Proteínas Nucleares , Humanos , Proteínas de Membrana , Citoplasma , Citosol , Proteínas de Transporte
2.
Virology ; 595: 110056, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38552409

RESUMO

The Peste des petits ruminant virus (PPRV) is a member of the Paramyxoviridae family and is classified into the genus Measles virus. PPRV predominantly infects small ruminants, leading to mortality rates of nearly 100%, which have caused significant economic losses in developing countries. Host proteins are important in virus replication, but the PPRV nucleocapsid (N) protein-host interacting partners for regulating PPRV replication remain unclear. The present study confirmed the interaction between PPRV-N and the host protein vimentin by co-immunoprecipitation and co-localization experiments. Overexpression of vimentin suppressed PPRV replication, whereas vimentin knockdown had the opposite effect. Mechanistically, N was subjected to degradation via the ubiquitin/proteasome pathway, where vimentin recruits the E3 ubiquitin ligase NEDD4L to fulfill N-ubiquitination, resulting in the degradation of the N protein. These findings suggest that the host protein vimentin and E3 ubiquitin ligase NEDD4L have an anti-PPRV effect.

3.
Virulence ; 15(1): 2333271, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515339

RESUMO

Staphylococcus pseudintermedius (S. pseudintermedius) is a common pathogen that causes canine corneal ulcers. However, the pathogenesis remained unclear. In this study, it has been demonstrated that S. pseudintermedius invaded canine corneal epithelial cells (CCECs) intracellularly, mediating oxidative damage and pyroptosis by promoting the accumulation of intracellular reactive oxygen species (ROS) and activating the NLRP3 inflammasome. The canine corneal stroma was infected with S. pseudintermedius to establish the canine corneal ulcer model in vivo. The intracellular infectious model in CCECs was established in vitro to explore the mechanism of the ROS - NLRP3 signalling pathway during the S. pseudintermedius infection by adding NAC or MCC950. Results showed that the expression of NLRP3 and gasdermin D (GSDMD) proteins increased significantly in the infected corneas (p < 0.01). The intracellular infection of S. pseudintermedius was confirmed by transmission electron microscopy and immunofluorescent 3D imaging. Flow cytometry analysis revealed that ROS and pyroptosis rates increased in the experimental group in contrast to the control group (p < 0.01). Furthermore, NAC or MCC950 inhibited activation of the ROS - NLRP3 signalling pathway and pyroptosis rate significantly, by suppressing pro-IL-1ß, cleaved-IL-1ß, pro-caspase-1, cleaved-caspase-1, NLRP3, GSDMD, GSDMD-N, and HMGB1 proteins. Thus, the research confirmed that oxidative damage and pyroptosis were involved in the process of CCECs infected with S. pseudintermedius intracellularly by the ROS - NLRP3 signalling pathway. The results enrich the understanding of the mechanisms of canine corneal ulcers and facilitate the development of new medicines and prevention measures.


Assuntos
Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Staphylococcus , Animais , Cães , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Úlcera , Linhagem Celular , Inflamassomos/metabolismo , Células Epiteliais/metabolismo , Sulfonamidas
4.
Int J Food Microbiol ; 416: 110657, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38452659

RESUMO

Although bacteriophage-based biosensors are promising tools for rapid, convenient, and sensitive detection of Staphylococcus aureus in food products, the effect of biosensors using temperate phages as biorecognition elements to detect viable S. aureus isolates remains unclear. In this study, three temperate S. aureus phages were isolated and their biological features (one-step growth, host range, pH stability, temperature stability, and adsorption rate) were evaluated as the biological element. The selected phage SapYZUs8 was immobilized on the nanozyme Cu-MOF via electrostatic interactions to generate SapYZUs8@Cu-MOF, and its detection performance in real food (skim milk and pork) was then evaluated. Compared with phages SapYZUm7 and SapYZUs16, phage SapYZUs8 exhibited a broader host range, greater pH stability (3-12), and a better absorption rate (92 %, 8 min) suitable for S. aureus detection, which is likely the result of the DNA replication (DNA helicase) and phage tail protein genes in the SapYZUs8 genome. Therefore, phage SapYZUs8 was fixed on Cu-MOF to generate SapYZUs8@Cu-MOF, which exhibited good sensitivity and specificity for rapid colourimetric detection of viable S. aureus. The method took <0.5 h, and the detection limit was 1.09 × 102 CFU/mL. In addition, SapYZUs8@Cu-MOF was successfully employed for the colourimetric detection of S. aureus in food samples without interference from different food additives, NaCl concentrations, or pH values. With these benefits, it allows rapid visual assessment of S. aureus levels.


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Colorimetria , Alimentos , Fagos de Staphylococcus/genética
5.
Mol Med ; 30(1): 41, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519941

RESUMO

BACKGROUND: Benign prostatic hyperplasia (BPH) is a prevalent disease affecting elderly men, with chronic inflammation being a critical factor in its development. Omentin-1, also known as intelectin-1 (ITLN-1), is an anti-inflammatory protein primarily found in the epithelial cells of the small intestine. This study aimed to investigate the potential of ITLN-1 in mitigating BPH by modulating local inflammation in the prostate gland. METHODS: Our investigation involved two in vivo experimental models. Firstly, ITLN-1 knockout mice (Itln-1-/-) were used to study the absence of ITLN-1 in BPH development. Secondly, a testosterone propionate (TP)-induced BPH mouse model was treated with an ITLN-1 overexpressing adenovirus. We assessed BPH severity using prostate weight index and histological analysis, including H&E staining, immunohistochemistry, and enzyme-linked immunosorbent assay. In vitro, the impact of ITLN-1 on BPH-1 cell proliferation and inflammatory response was evaluated using cell proliferation assays and enzyme-linked immunosorbent assay. RESULTS: In vivo, Itln-1-/- mice exhibited elevated prostate weight index, enlarged lumen area, and higher TNF-α levels compared to wild-type littermates. In contrast, ITLN-1 overexpression in TP-induced BPH mice resulted in reduced prostate weight index, lumen area, and TNF-α levels. In vitro studies indicated that ITLN-1 suppressed the proliferation of prostate epithelial cells and reduced TNF-α production in macrophages, suggesting a mechanism involving the inhibition of macrophage-mediated inflammation. CONCLUSION: The study demonstrates that ITLN-1 plays a significant role in inhibiting the development of BPH by reducing local inflammation in the prostate gland. These findings highlight the potential of ITLN-1 as a therapeutic target in the management of BPH.


Assuntos
Hiperplasia Prostática , Humanos , Masculino , Camundongos , Animais , Idoso , Hiperplasia Prostática/genética , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/metabolismo , Fator de Necrose Tumoral alfa , Extratos Vegetais/farmacologia , Próstata/metabolismo , Próstata/patologia , Inflamação/patologia
6.
Heliyon ; 10(6): e28295, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545181

RESUMO

Sunitinib, the first-line targeted therapy for metastatic clear cell renal cell carcinoma (ccRCC), faces a significant challenge as most patients develop acquired resistance. Integrated genomic and proteomic analyses identified PYGL as a novel therapeutic target for ccRCC. PYGL knockdown inhibited cell proliferation, cloning capacity, migration, invasion, and tumorigenesis in ccRCC cell lines. PYGL expression was increased in sunitinib-resistant ccRCC cell lines, and CP-91149 targeting the PYGL could restore drug sensitivity in these cell lines. Moreover, chromatin immune-precipitation assays revealed that PYGL upregulation is induced by the transcription factor, hypoxia-inducible factor 1α. Overall, PYGL was identified as a novel diagnostic biomarker by combining genomic and proteomic approaches in ccRCC, and sunitinib resistance to ccRCC may be overcome by targeting PYGL.

7.
Aging (Albany NY) ; 16(1): 820-843, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38198170

RESUMO

A thorough assessment of lactate-related genes (LRGs) in different types of human cancers is currently lacking. To elucidate the molecular landscape of LRGs, we conducted a comprehensive analysis using genomic, mRNA, and microRNA expression profiles and developed a lactate score model using the least absolute shrinkage and selection operator (LASSO) algorithm. We found that our lactate score could be a prognostic marker instead of LDHA for several cancer patients who possess high-frequency variants in LRGs. The lactate score also demonstrated an association with CD8+ T cells infiltration in multiple cancer types. Furthermore, our findings indicate that the lactate score holds promise as a potential biomarker for immunotherapy in patients with bladder cancer (BLCA) and skin cutaneous melanoma (SKCM). Among the seventeen genes of the lactate score model, PDP1 showed the strongest positive correlation with lactate score and the potential as a standalone biomarker for prognosis. In general, our study has yielded crucial insights into the potential application of the lactate score as a predictive biomarker for both survival outcomes and the response to immunotherapy. By recognizing the prognostic significance of lactate metabolism, we open avenues for further investigations aimed at harnessing the therapeutic potential of lactate.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Ácido Láctico , Prognóstico , Melanoma/genética , Melanoma/terapia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/terapia , Imunoterapia , Biomarcadores
8.
Biol Trace Elem Res ; 202(4): 1568-1581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37407885

RESUMO

Klebsiella pneumoniae (K. pneumoniae) is one of the major pathogens causing bovine clinical mastitis. Autophagy maintains cellular homeostasis and resists excessive inflammation in eukaryotic organisms. Selenomethionine (Se-Met) is commonly used as a source of selenium supplementation for dairy cows. This study aimed to investigate the effects of Se-Met on inflammatory responses mediated by nuclear factor-kappa B (NF-κB) through autophagy. We infected bovine mammary epithelial cell line (MAC-T) with K. pneumoniae and examined the expression of autophagy-related proteins and changes in autophagic vesicles, LC3 puncta, and autophagic flux at various intervals. The results showed that K. pneumoniae activated the early-stage autophagy of MAC-T cells. The levels of LC3-II, Beclin1, and ATG5, as well as the number of LC3 puncta and autophagic vesicles, increased after 2 h post-treatment. However, the late-stage autophagic flux was blocked. Furthermore, the effect of autophagy on NF-κB-mediated inflammation was investigated with different autophagy levels. The findings showed that enhanced autophagy inhibited the K. pneumoniae-induced inflammatory responses of MAC-T cells. The opposite results were found with the inhibition of autophagy. Finally, we examined the effect of Se-Met on NF-κB-mediated inflammation based on autophagy. The results indicated that Se-Met alleviated K. pneumoniae-induced autophagic flux blockage, inhibited NF-κB-mediated inflammation, and decreased the adhesion of K. pneumoniae to MAC-T cells. The inhibitory effect of Se-Met on NF-κB-mediated inflammation could be partially blocked by the autophagy inhibitor chloroquine (CQ). Overall, Se-Met attenuated K. pneumoniae-induced NF-κB-mediated inflammatory responses by enhancing autophagic flux.


Assuntos
NF-kappa B , Selenometionina , Feminino , Bovinos , Animais , NF-kappa B/metabolismo , Selenometionina/farmacologia , Selenometionina/metabolismo , Klebsiella pneumoniae , Autofagia , Inflamação/metabolismo , Células Epiteliais/metabolismo
9.
Int J Antimicrob Agents ; 63(2): 107057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38072168

RESUMO

Bacterial pathogens reprogramme their metabolic networks to support growth and establish infection at specific sites. Bacterial central metabolism has been considered attractive for developing antimicrobial drugs; however, most metabolic enzymes are conserved between humans and bacteria. This study found that blockade of methionine biosynthesis in Citrobacter rodentium and Salmonella enteritidis inhibited bacterial growth and activity of the type III secretion system, resulting in severe defects in colonization and pathogenicity. In addition, α-methyl-methionine was found to inhibit the activity of methionine biosynthetic enzyme MetA, and consequently reduce the virulence and pathogenicity of enteric pathogens. These findings highlight the crucial role of methionine in bacterial virulence, and describe a potential new drug target.


Assuntos
Antibacterianos , Fatores de Virulência , Humanos , Virulência , Antibacterianos/farmacologia , Bactérias , Metionina , Proteínas de Bactérias
10.
Acta Trop ; 249: 107082, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008371

RESUMO

Assessing the risk of malaria local transmission and re-introduction is crucial for the preparation and implementation of an effective elimination campaign and the prevention of malaria re-introduction in China. Therefore, this review aims to evaluate the risk factors for malaria local transmission and re-introduction in China over the period of pre-elimination to elimination. Data were obtained from six databases searched for studies that assessed malaria local transmission risk before malaria elimination and re-introduction risk after the achievement of malaria elimination in China since the launch of the NMEP in 2010, employing the keywords "malaria" AND ("transmission" OR "re-introduction") and their synonyms. A total of 8,124 articles were screened and 53 articles describing 55 malaria risk assessment models in China from 2010 to 2023, including 40 models assessing malaria local transmission risk (72.7%) and 15 models assessing malaria re-introduction risk (27.3%). Factors incorporated in the 55 models were extracted and classified into six categories, including environmental and meteorological factors (39/55, 70.9%), historical epidemiology (35/55, 63.6%), vectorial factors (32/55, 58.2%), socio-demographic information (15/26, 53.8%), factors related to surveillance and response capacity (18/55, 32.7%), and population migration aspects (13/55, 23.6%). Environmental and meteorological factors as well as vectorial factors were most commonly incorporated in models assessing malaria local transmission risk (29/40, 72.5% and 21/40, 52.5%) and re-introduction risk (10/15, 66.7% and 11/15, 73.3%). Factors related to surveillance and response capacity and population migration were also important in malaria re-introduction risk models (9/15, 60%, and 6/15, 40.0%). A total of 18 models (18/55, 32.7%) reported the modeling performance. Only six models were validated internally and five models were validated externally. Of 53 incorporated studies, 45 studies had a quality assessment score of seven and above. Environmental and meteorological factors as well as vectorial factors play a significant role in malaria local transmission and re-introduction risk assessment. The factors related to surveillance and response capacity and population migration are more important in assessing malaria re-introduction risk. The internal and external validation of the existing models needs to be strengthened in future studies.


Assuntos
Malária , Humanos , Malária/epidemiologia , Malária/prevenção & controle , China/epidemiologia , Fatores de Risco , Medição de Risco , Conceitos Meteorológicos
11.
Vaccines (Basel) ; 11(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140181

RESUMO

Avian pathogenic Escherichia coli (APEC) is one of the leading pathogens that cause devastating economic losses to the poultry industry. Type I fimbriae are essential adhesion factors of APEC, which can be targeted and developed as a vaccine candidate against multiple APEC serogroups due to their excellent immunogenicity and high homology. In this study, the recombinant strain SG102 was developed by expressing the APEC type I fimbriae gene cluster (fim) on the cell surface of an avirulent Salmonella gallinarum (S. gallinarum) vector strain using a chromosome-plasmid-balanced lethal system. The expression of APEC type I fimbriae was verified by erythrocyte hemagglutination assays and antigen-antibody agglutination tests. In vitro, the level of the SG102 strain adhering to leghorn male hepatoma (LMH) cells was significantly higher than that of the empty plasmid control strain, SG101. At two weeks after oral immunization, the SG102 strain remained detectable in the livers, spleens, and ceca of SG102-immunized chickens, while the SG101 strain was eliminated in SG101-immunized chickens. At 14 days after the secondary immunization with 5 × 109 CFU of the SG102 strain orally, highly antigen-specific humoral and mucosal immune responses against APEC type I fimbriae protein were detected in SG102-immunized chickens, with IgG and secretory IgA (sIgA) concentrations of 221.50 µg/mL and 1.68 µg/mL, respectively. The survival rates of SG102-immunized chickens were 65% (13/20) and 60% (12/20) after challenge with 50 LD50 doses of APEC virulent strains O78 and O161 serogroups, respectively. By contrast, 95% (19/20) and 100% (20/20) of SG101-immunized chickens died in challenge studies involving APEC O78 and O161 infections, respectively. In addition, the SG102 strain effectively provided protection against lethal challenges from the virulent S. gallinarum strain. These results demonstrate that the SG102 strain, which expresses APEC type I fimbriae, is a promising vaccine candidate against APEC O78 and O161 serogroups as well as S. gallinarum infections.

12.
Natl Sci Rev ; 10(10): nwad228, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37965675

RESUMO

Understanding changes in pathogen behavior (e.g. increased virulence, a shift in transmission channel) is critical for the public health management of emerging infectious diseases. Genome degradation via gene depletion or inactivation is recognized as a pathoadaptive feature of the pathogen evolving with the host. However, little is known about the exact role of genome degradation in affecting pathogenic behavior, and the underlying molecular detail has yet to be examined. Using large-scale global avian-restricted Salmonella genomes spanning more than a century, we projected the genetic diversity of Salmonella Pullorum (bvSP) by showing increasingly antimicrobial-resistant ST92 prevalent in Chinese flocks. The phylogenomic analysis identified three lineages in bvSP, with an enhancement of virulence in the two recently emerged lineages (L2/L3), as evidenced in chicken and embryo infection assays. Notably, the ancestor L1 lineage resembles the Salmonella serovars with higher metabolic flexibilities and more robust environmental tolerance, indicating stepwise evolutionary trajectories towards avian-restricted lineages. Pan-genome analysis pinpointed fimbrial degradation from a virulent lineage. The later engineered fim-deletion mutant, and all other five fimbrial systems, revealed behavior switching that restricted horizontal fecal-oral transmission but boosted virulence in chicks. By depleting fimbrial appendages, bvSP established persistent replication with less proinflammation in chick macrophages and adopted vertical transovarial transmission, accompanied by ever-increasing intensification in the poultry industry. Together, we uncovered a previously unseen paradigm for remodeling bacterial surface appendages that supplements virulence-enhanced evolution with increased vertical transmission.

13.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37983290

RESUMO

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Anticorpos Neutralizantes , Sorogrupo , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes/genética , Epitopos , Proteínas do Capsídeo/genética , Anticorpos Monoclonais
14.
Allergy Asthma Clin Immunol ; 19(1): 97, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978564

RESUMO

BACKGROUND: Although numerous studies have suggested a negative correlation between Helicobacter pylori (H. pylori) infection and allergies, there has been limited research on the relationship between H. pylori infections and atopic dermatitis (AD). The present study aimed to investigate the effects of H. pylori infection in an AD mouse model and identify potential mechanisms related to type 2 immunity, skin barrier defects, and pruritus. METHODS: A model of AD-like symptoms was established with 2,4-dinitrochlorobenzene (DNCB) after infection of the gastric cavity with H. pylori. Analysis of the expression of key inflammatory cytokines and serum levels of immunoglobulin E (IgE) was based on enzyme-linked immunosorbent assay (ELISA). The expression of filaggrin (FLG) and loricrin (LOR) were analyzed by immunohistochemistry staining. The evaluation of STAT1, STAT3, phosphorylated STAT1 (phospho-STAT1), and phosphorylated STAT3 (phospho-STAT1) expression levels in skin lesions was performed using western blot. RESULTS: The present study showed that the H. pylori-positive AD group (HP+AD+) exhibited milder skin lesions, including erythema, erosion, swelling, and scaling, than the H. pylori-negative AD group (HP-AD+). Additionally, HP+AD+ displayed lower levels of IgE in serum, and downregulated expression of interleukins 4 and 31 (IL-4 and IL-31) in serum. Furthermore, HP+AD+ demonstrated higher expression of filaggrin and loricrin than HP-AD+. Notably, H. pylori significantly reduced the amount of phosphorylated STAT1 and STAT3. CONCLUSION: Helicobacter pylori infection negatively regulates the inflammatory response by affecting inflammatory factors in the immune response, and repairs the defective epidermal barrier function. In addition, H. pylori infection may reduce IL-31, thereby alleviating pruritus. These effects may be associated with the inhibition of JAK-STAT signaling activation.

15.
Mater Today Bio ; 23: 100854, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38024846

RESUMO

Bone regeneration heavily relies on bone marrow mesenchymal stem cells (BMSCs). However, recruiting endogenous BMSCs for in situ bone regeneration remains challenging. In this study, we developed a novel BMSC-aptamer (BMSC-apt) functionalized hydrogel (BMSC-aptgel) and evaluated its functions in recruiting BMSCs and promoting bone regeneration. The functional hydrogels were synthesized between maleimide-terminated 4-arm polyethylene glycols (PEG) and thiol-flanked PEG crosslinker, allowing rapid in situ gel formation. The aldehyde group-modified BMSC-apt was covalently bonded to a thiol-flanked PEG crosslinker to produce high-density aptamer coverage on the hydrogel surface. In vitro and in vivo studies demonstrated that the BMSC-aptgel significantly increased BMSC recruitment, migration, osteogenic differentiation, and biocompatibility. In vivo fluorescence tomography imaging demonstrated that functionalized hydrogels effectively recruited DiR-labeled BMSCs at the fracture site. Consequently, a mouse femur fracture model significantly enhanced new bone formation and mineralization. The aggregated BMSCs stimulated bone regeneration by balancing osteogenic and osteoclastic activities and reduced the local inflammatory response via paracrine effects. This study's findings suggest that the BMSC-aptgel can be a promising and effective strategy for promoting in situ bone regeneration.

16.
Syst Biol Reprod Med ; 69(6): 423-434, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37812750

RESUMO

This study aimed to investigate the impact of mono(2-ethylhexyl) phthalate (MEHP) on the proliferation, apoptosis, and migration of human foreskin fibroblast cells (HFF-1) and the role of the JNK signaling pathway in cell migration. HFF-1 cells were randomly assigned to the control group with 0 MEHP exposure (M0) or the experimental groups with 25, 50, 100, 200, and 400 µmol/L MEHP exposure (M25, M50, M100, M200, and M400, respectively). After 24 and 48 h of MEHP exposure, the proliferation of HFF-1 cells in any group had no significant change. However, compared with the M0 group, the M200 and M400 groups presented substantially increased apoptosis of HFF-1 cells. Moreover, cell migration ability significantly decreased in all groups (p < 0.05). Additionally, the transcription and phosphorylated protein activation of JNK kinase in HFF-1 cells were substantially upregulated with the increase in MEHP exposure. Subsequently, HFF-1 cells were randomly divided into three groups: the DMSO blank control group, the 100 µM MEHP experimental group (M100), and the 100 µM MEHP plus 10 µM SP600125 (specific JNK inhibitor) experimental group (S10). The activation of JNK protein in HFF-1 cells was substantially downregulated in the S10 group. HFF-1 cells were also divided into the blank control group (M0). They were treated with 100 µM MEHP and varying concentrations of SP600125 (5, 10, and 15 µM for S5, S10, and S15, respectively). As the concentration of the antagonist increased, the migration ability of HFF-1 cells was returned to normal. Finally, the ROS in HFF-1 cells increased under MEHP exposure. This finding indicates that the regulation of cell migration by the JNK signaling pathway may be important in the occurrence of hypospadias.


Assuntos
Fibroblastos , Prepúcio do Pênis , Masculino , Humanos , Antracenos/farmacologia
17.
Microbiol Res ; 276: 127484, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37659336

RESUMO

Multidrug resistance (MDR) Staphylococcus aureus is frequently isolated from food products, and can cause severe clinical infection. Bacteriophage (phage) therapy is a promising biocontrol agent against MDR S. aureus in food contamination and clinical infections. In this study, the antimicrobial susceptibility of 47 S. aureus isolates from three swine farms, two slaughterhouses, and four markets (Yangzhou, China) were evaluated. The biological characteristics of four lytic S. aureus phages were compared and the lytic activity of phage SapYZU15 against MDR S. aureus was assessed using milk, fresh pork and a mouse model of subcutaneous abscess. The results showed that 28 S. aureus isolates (59.6%, 28/47) exhibited multiple antibiotic resistance to at least three different classes of antibiotics. Compared to SapYZU01, SapYZU02, and SapYZU03, SapYZU15 had a shorter latent period (10 min), larger burst size (322.00 PFU/cell), broader host range, wider temperature stability (-80 to 50 °C), and pH stability. Furthermore, SapYZU15 significantly reduces the counts of S. aureus in milk and pork (5.69 and 1.16 log colony-forming unit/mL, respectively) at 25 °C and controls the growth of S. aureus at 4 °C. Compared to the mice infected with S. aureus MRSA JCSC 4744 and cocktail (S. aureus YZUsa1, YZUsa4, YZUsa12, YZUsa14, and MRSA JCSC 4744), treatment with SapYZU15 led to faster tissue healing, less weight loss, and lower viable S. aureus counts in the murine abscess model. Moreover, prevention with SapYZU15 effectively inhibited abscess formation through a synergistic effect with pro-inflammatory cytokines. Consequently, our results suggest that SapYZU15 is an effective strategy for controlling S. aureus contamination in food products, and possesses an immense potential to treat and prevent clinic infection caused by MDR S. aureus strains. The interactions and mechanisms between SapYZU15 and its bacterial host differed depending on the model, temperature, and multiplicity of infection (MOI).


Assuntos
Bacteriófagos , Infecções Estafilocócicas , Animais , Camundongos , Suínos , Staphylococcus aureus , Abscesso/tratamento farmacológico , Especificidade de Hospedeiro , Infecções Estafilocócicas/tratamento farmacológico
18.
Vet Microbiol ; 284: 109836, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37574636

RESUMO

African swine fever (ASF) is an acute, severe, and highly contagious disease caused by the African swine fever virus (ASFV), which infects domestic pigs and wild boars. The incidence and mortality rates of swine infected with virulent strains of ASFV can reach up to 100%. The large genome, its complex structure, multiple genotypes, and a lack of understanding regarding ASFV gene function are serious obstacles to the development of safe and effective vaccines. Here, ASFV I329L was identified as a relatively conserved gene that is expressed during the late stage of infection. A recombinant virus with I329L gene deletion (ASFV CN/GS/2018-ΔI329L) was produced by replacing I329L with an enhanced green fluorescent protein (EGFP) cassette. In order to explore the function of the ASFV I329L gene, transcriptome sequencing (RNA-seq) was performed on porcine alveolar macrophages (PAMs) infected with ASFV CN/GS/2018 and ASFV CN/GS/2018-ΔI329L. GO functional and KEGG pathway analyses were performed to analyze differentially expressed genes, and different alternative splicing (AS) events were also analyzed. We compared the sequencing data for each sample with the ASFV CN/GS/2018 reference sequence. Interestingly, we found 3 and 1 up-regulated genes and 12 and 19 down-regulated genes at 12 and 24 h post-infection, respectively. In addition, we verified the expression of 5 up-regulated and 5 down-regulated genes by RT-qPCR, and the results were consistent with those obtained based on RNA-seq. In summary, the results obtained in this study provide new insights for further elucidation of ASFV proteins and ASFV-host interactions. These findings will contribute to implementing a comprehensive strategy for controlling the spread of ASF.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Doenças dos Suínos , Suínos , Animais , Sus scrofa , Genótipo , Perfilação da Expressão Gênica/veterinária
19.
Bone Res ; 11(1): 45, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587136

RESUMO

Due to increasing morbidity worldwide, fractures are becoming an emerging public health concern. This study aimed to investigate the effect of metformin on the healing of osteoporotic as well as normal fractures. Type H vessels have recently been identified as a bone-specific vascular subtype that supports osteogenesis. Here, we show that metformin accelerated fracture healing in both osteoporotic and normal mice. Moreover, metformin promoted angiogenesis in vitro under hypoxia as well as type H vessel formation throughout fracture healing. Mechanistically, metformin increased the expression of HIF-1α, an important positive regulator of type H vessel formation, by inhibiting the expression of YAP1/TAZ in calluses and hypoxia-cultured human microvascular endothelial cells (HMECs). The results of HIF-1α or YAP1/TAZ interference in hypoxia-cultured HMECs using siRNA further suggested that the enhancement of HIF-1α and its target genes by metformin is primarily through YAP1/TAZ inhibition. Finally, overexpression of YAP1/TAZ partially counteracted the effect of metformin in promoting type H vessel-induced angiogenesis-osteogenesis coupling during fracture repair. In summary, our findings suggest that metformin has the potential to be a therapeutic agent for fractures by promoting type H vessel formation through YAP1/TAZ inhibition.

20.
Microbiol Res ; 275: 127461, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37499310

RESUMO

Owing to the threats that Salmonella poses to public health and the abuse of antimicrobials, bacteriophage therapy against Salmonella is experiencing a resurgence. Although several phages have been reported as safe and efficient for controlling Salmonella, the genetic diversity and relatedness among Salmonella phages remain poorly understood. In this study, whole-genome sequences of 91 Salmonella bacteriophages were obtained from the National Center for Biological Information genome database. Phylogenetic analysis, mosaic structure comparisons, gene content analysis, and orthologue group clustering were performed. Phylogenetic analysis revealed four singletons and two major lineages (I-II), including five subdividing clades, of which Salmonella phages belonging to morphologically distinct families were clustered in the same clade. Chimeric structures (n = 31), holin genes (n = 18), lysin genes (n = 66), DNA packaging genes (n = 55), and DNA metabolism genes (n = 24) were present in these phages. Moreover, phages from different subdivided clusters harboured distinct genes associated with host cell lysis, DNA packaging, and DNA metabolism. Notably, phages belonging to morphologically distinct families shared common orthologue groups. Although several functional modules of phages SS1 and SE16 shared > 99% nucleotide sequence identity with phages SI2 and SI23, the major differences between these phages were the absence and replication of functional modules. The data obtained herein revealed the genetic diversity of Salmonella phages at genomic, structural, and gene content levels. The genetic diversity of Salmonella phages is likely owing to the acquisition, loss, and replication of functional modules.


Assuntos
Bacteriófagos , Fagos de Salmonella , Humanos , Fagos de Salmonella/genética , Filogenia , Genoma Viral , Bacteriófagos/genética , Salmonella/genética , DNA , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...